China supplier Chain Conveyor 64b-2 B Series Short Pitch Precision Duplex Roller Chains and Bush Chains for Steel Mill and Coal Machine mill chain

Product Description

B Series Short pitch Precision Duplex Roller Chains & Bush Chains

ISO/DIN
Chain No.
Pitch

P
mm

Roller diameter

d1max
mm

Width
between inner plates
b1min
mm
Pin diameter

d2 max
mm

Pin length Inner
plate depth
h2max
mm
Plate thickness

t/Tmax
mm

Transverse pitch

         Pt         mm

Tensile strength

Qmin
kN/lbf

Average
tensile strength

Q0
kN

Weight
per meter
q  kg/m
Lmax
mm
Lcmax
mm
64B-2 101.600 63.50 60.96 39.40 249.9 258.4 90.17 15.00/13.0 119.89 2000.0/454544 2200.0 91.00

*Straight side plates

 

ROLLER CHAIN

Roller chain or bush roller chain is the type of chain drive most commonly used for transmission of mechanical power on many kinds of domestic, industrial and agricultural machinery, including conveyors, wire- and tube-drawing machines, printing presses, cars, motorcycles, and bicycles. It consists of a series of short cylindrical rollers held together by side links. It is driven by a toothed wheel called a sprocket. It is a simple, reliable, and efficient means of power transmission.

CONSTRUCTION OF THE CHAIN

Two different sizes of roller chain, showing construction.
There are 2 types of links alternating in the bush roller chain. The first type is inner links, having 2 inner plates held together by 2 sleeves or bushings CZPT which rotate 2 rollers. Inner links alternate with the second type, the outer links, consisting of 2 outer plates held together by pins passing through the bushings of the inner links. The “bushingless” roller chain is similar in operation though not in construction; instead of separate bushings or sleeves holding the inner plates together, the plate has a tube stamped into it protruding from the hole which serves the same purpose. This has the advantage of removing 1 step in assembly of the chain.

The roller chain design reduces friction compared to simpler designs, resulting in higher efficiency and less wear. The original power transmission chain varieties lacked rollers and bushings, with both the inner and outer plates held by pins which directly contacted the sprocket teeth; however this configuration exhibited extremely rapid wear of both the sprocket teeth, and the plates where they pivoted on the pins. This problem was partially solved by the development of bushed chains, with the pins holding the outer plates passing through bushings or sleeves connecting the inner plates. This distributed the wear over a greater area; however the teeth of the sprockets still wore more rapidly than is desirable, from the sliding friction against the bushings. The addition of rollers surrounding the bushing sleeves of the chain and provided rolling contact with the teeth of the sprockets resulting in excellent resistance to wear of both sprockets and chain as well. There is even very low friction, as long as the chain is sufficiently lubricated. Continuous, clean, lubrication of roller chains is of primary importance for efficient operation as well as correct tensioning.

LUBRICATION

Many driving chains (for example, in factory equipment, or driving a camshaft inside an internal combustion engine) operate in clean environments, and thus the wearing surfaces (that is, the pins and bushings) are safe from precipitation and airborne grit, many even in a sealed environment such as an oil bath. Some roller chains are designed to have o-rings built into the space between the outside link plate and the inside roller link plates. Chain manufacturers began to include this feature in 1971 after the application was invented by Joseph Montano while working for Whitney Chain of Hartford, Connecticut. O-rings were included as a way to improve lubrication to the links of power transmission chains, a service that is vitally important to extending their working life. These rubber fixtures form a barrier that holds factory applied lubricating grease inside the pin and bushing wear areas. Further, the rubber o-rings prevent dirt and other contaminants from entering inside the chain linkages, where such particles would otherwise cause significant wear.[citation needed]

There are also many chains that have to operate in dirty conditions, and for size or operational reasons cannot be sealed. Examples include chains on farm equipment, bicycles, and chain saws. These chains will necessarily have relatively high rates of wear, particularly when the operators are prepared to accept more friction, less efficiency, more noise and more frequent replacement as they neglect lubrication and adjustment.

Many oil-based lubricants attract dirt and other particles, eventually forming an CZPT paste that will compound wear on chains. This problem can be circumvented by use of a “dry” PTFE spray, which forms a solid film after application and repels both particles and moisture.

VARIANTS DESIGN

Layout of a roller chain: 1. Outer plate, 2. Inner plate, 3. Pin, 4. Bushing, 5. Roller
If the chain is not being used for a high wear application (for instance if it is just transmitting motion from a hand-operated lever to a control shaft on a machine, or a sliding door on an oven), then 1 of the simpler types of chain may still be used. Conversely, where extra strength but the smooth drive of a smaller pitch is required, the chain may be “siamesed”; instead of just 2 rows of plates on the outer sides of the chain, there may be 3 (“duplex”), 4 (“triplex”), or more rows of plates running parallel, with bushings and rollers between each adjacent pair, and the same number of rows of teeth running in parallel on the sprockets to match. Timing chains on automotive engines, for example, typically have multiple rows of plates called strands.

Roller chain is made in several sizes, the most common American National Standards Institute (ANSI) standards being 40, 50, 60, and 80. The first digit(s) indicate the pitch of the chain in eighths of an inch, with the last digit being 0 for standard chain, 1 for lightweight chain, and 5 for bushed chain with no rollers. Thus, a chain with half-inch pitch would be a #40 while a #160 sprocket would have teeth spaced 2 inches apart, etc. Metric pitches are expressed in sixteenths of an inch; thus a metric #8 chain (08B-1) would be equivalent to an ANSI #40. Most roller chain is made from plain carbon or alloy steel, but stainless steel is used in food processing machinery or other places where lubrication is a problem, and nylon or brass are occasionally seen for the same reason.

Roller chain is ordinarily hooked up using a master link (also known as a connecting link), which typically has 1 pin held by a horseshoe clip rather than friction fit, allowing it to be inserted or removed with simple tools. Chain with a removable link or pin is also known as cottered chain, which allows the length of the chain to be adjusted. Half links (also known as offsets) are available and are used to increase the length of the chain by a single roller. Riveted roller chain has the master link (also known as a connecting link) “riveted” or mashed on the ends. These pins are made to be durable and are not removable.

USE

An example of 2 ‘ghost’ sprockets tensioning a triplex roller chain system
Roller chains are used in low- to mid-speed drives at around 600 to 800 feet per minute; however, at higher speeds, around 2,000 to 3,000 feet per minute, V-belts are normally used due to wear and noise issues.
A bicycle chain is a form of roller chain. Bicycle chains may have a master link, or may require a chain tool for removal and installation. A similar but larger and thus stronger chain is used on most motorcycles although it is sometimes replaced by either a toothed belt or a shaft drive, which offer lower noise level and fewer maintenance requirements.
The great majority of automobile engines use roller chains to drive the camshaft(s). Very high performance engines often use gear drive, and starting in the early 1960s toothed belts were used by some manufacturers.
Chains are also used in forklifts using hydraulic rams as a pulley to raise and lower the carriage; however, these chains are not considered roller chains, but are classified as lift or leaf chains.
Chainsaw cutting chains superficially resemble roller chains but are more closely related to leaf chains. They are driven by projecting drive links which also serve to locate the chain CZPT the bar.

Sea Harrier FA.2 ZA195 front (cold) vector thrust nozzle – the nozzle is rotated by a chain drive from an air motor
A perhaps unusual use of a pair of motorcycle chains is in the Harrier Jump Jet, where a chain drive from an air motor is used to rotate the movable engine nozzles, allowing them to be pointed downwards for hovering flight, or to the rear for normal CZPT flight, a system known as Thrust vectoring.

WEAR

 

The effect of wear on a roller chain is to increase the pitch (spacing of the links), causing the chain to grow longer. Note that this is due to wear at the pivoting pins and bushes, not from actual stretching of the metal (as does happen to some flexible steel components such as the hand-brake cable of a motor vehicle).

With modern chains it is unusual for a chain (other than that of a bicycle) to wear until it breaks, since a worn chain leads to the rapid onset of wear on the teeth of the sprockets, with ultimate failure being the loss of all the teeth on the sprocket. The sprockets (in particular the smaller of the two) suffer a grinding motion that puts a characteristic hook shape into the driven face of the teeth. (This effect is made worse by a chain improperly tensioned, but is unavoidable no matter what care is taken). The worn teeth (and chain) no longer provides smooth transmission of power and this may become evident from the noise, the vibration or (in car engines using a timing chain) the variation in ignition timing seen with a timing light. Both sprockets and chain should be replaced in these cases, since a new chain on worn sprockets will not last long. However, in less severe cases it may be possible to save the larger of the 2 sprockets, since it is always the smaller 1 that suffers the most wear. Only in very light-weight applications such as a bicycle, or in extreme cases of improper tension, will the chain normally jump off the sprockets.

The lengthening due to wear of a chain is calculated by the following formula:

M = the length of a number of links measured

S = the number of links measured

P = Pitch

In industry, it is usual to monitor the movement of the chain tensioner (whether manual or automatic) or the exact length of a drive chain (one rule of thumb is to replace a roller chain which has elongated 3% on an adjustable drive or 1.5% on a fixed-center drive). A simpler method, particularly suitable for the cycle or motorcycle user, is to attempt to pull the chain away from the larger of the 2 sprockets, whilst ensuring the chain is taut. Any significant movement (e.g. making it possible to see through a gap) probably indicates a chain worn up to and beyond the limit. Sprocket damage will result if the problem is ignored. Sprocket wear cancels this effect, and may mask chain wear.

CHAIN STRENGTH

The most common measure of roller chain’s strength is tensile strength. Tensile strength represents how much load a chain can withstand under a one-time load before breaking. Just as important as tensile strength is a chain’s fatigue strength. The critical factors in a chain’s fatigue strength is the quality of steel used to manufacture the chain, the heat treatment of the chain components, the quality of the pitch hole fabrication of the linkplates, and the type of shot plus the intensity of shot peen coverage on the linkplates. Other factors can include the thickness of the linkplates and the design (contour) of the linkplates. The rule of thumb for roller chain operating on a continuous drive is for the chain load to not exceed a mere 1/6 or 1/9 of the chain’s tensile strength, depending on the type of master links used (press-fit vs. slip-fit)[citation needed]. Roller chains operating on a continuous drive beyond these thresholds can and typically do fail prematurely via linkplate fatigue failure.

The standard minimum ultimate strength of the ANSI 29.1 steel chain is 12,500 x (pitch, in inches)2. X-ring and O-Ring chains greatly decrease wear by means of internal lubricants, increasing chain life. The internal lubrication is inserted by means of a vacuum when riveting the chain together.

CHAIN STHangZhouRDS

Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

Pitch (inches) Pitch expressed
in eighths
ANSI standard
chain number
Width (inches)
14 28 25 18
38 38 35 316
12 48 41 14
12 48 40 516
58 58 50 38
34 68 60 12
1 88 80 58

Notes:
1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
 A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

Roller chains made using ISO standard are sometimes called as isochains.

 

WHY CHOOSE US 

1. Reliable Quality Assurance System
2. Cutting-Edge Computer-Controlled CNC Machines
3. Bespoke Solutions from Highly Experienced Specialists
4. Customization and OEM Available for Specific Application
5. Extensive Inventory of Spare Parts and Accessories
6. Well-Developed CZPT Marketing Network
7. Efficient After-Sale Service System

 

The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

 

 

 

 

Standard or Nonstandard: Standard
Application: Textile Machinery, Garment Machinery, Conveyer Equipment, Packaging Machinery, Electric Cars, Motorcycle, Food Machinery, Marine, Mining Equipment, Agricultural Machinery, Car, Food and Beverage Industry, Motorcycle Parts
Surface Treatment: Polishing
Structure: Roller Chain
Material: Alloy
Type: Short Pitch Chain
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

mill chain

How do mill chains handle material flow and transfer in bulk handling applications?

Mill chains are specifically designed to handle material flow and transfer in bulk handling applications with efficiency and reliability. These chains are widely used in various industries, such as agriculture, mining, construction, and more, where bulk materials need to be transported in large quantities. Here’s how mill chains achieve material flow and transfer:

1. Robust Construction: Mill chains are constructed using high-quality materials, such as alloy steel, which provides excellent strength and durability. Their robust design allows them to handle heavy loads and withstand the stresses of continuous material transfer.

2. Precise Alignment: The design of mill chains ensures precise alignment between the chain and sprockets. This alignment helps to maintain a smooth and consistent material flow, reducing the risk of jams or blockages in the system.

3. Flexibility: Mill chains are flexible enough to adapt to various conveyor configurations, including inclined or declined conveyors. This flexibility enables them to efficiently transport materials across different terrains and elevations.

4. Low Friction: Mill chains are designed to minimize friction during operation. This low friction characteristic reduces the energy consumption and wear on the chain, resulting in a longer service life and improved material transfer efficiency.

5. Adaptability: Mill chains are suitable for handling a wide range of bulk materials, including grains, aggregates, ores, coal, wood chips, and more. Their adaptability makes them a versatile choice for different industries.

6. Conveyor Systems: In bulk handling applications, mill chains are commonly used in conveyor systems. These systems utilize rotating sprockets to move the chain, and the material is carried along the conveyor’s path, ensuring a continuous flow of materials from one point to another.

7. Bucket Elevators: Mill chains are often employed in bucket elevators, which lift and transfer bulk materials vertically. The buckets attached to the chain scoop up the material and discharge it at the desired location, providing an efficient material handling solution.

Overall, mill chains are essential components in bulk handling applications, ensuring the smooth and consistent flow of materials in various industrial processes. Their reliable performance, strength, and adaptability make them a preferred choice for material transfer in many industries.

mill chain

Can mill chains be used in the packaging and bottling industry?

Yes, mill chains can be used in the packaging and bottling industry for various material handling and conveying applications. The packaging and bottling industry involves the efficient and precise movement of products, containers, and packaging materials throughout the production process. Mill chains offer several advantages that make them suitable for these applications:

  • Precision and Accuracy: Mill chains provide accurate and reliable material transfer, ensuring that products are positioned correctly during the packaging and bottling process.
  • High Load Capacity: The industry often deals with heavy containers and products, and mill chains are designed to handle significant loads while maintaining their performance.
  • Smooth Operation: Mill chains offer low friction and reduced noise during operation, contributing to a smooth and efficient production line.
  • Automation Compatibility: Mill chains can be integrated into automated packaging and bottling systems, enabling seamless and precise material handling.
  • Flexible Configurations: Mill chains come in various sizes and configurations, allowing them to be tailored to the specific needs of the packaging and bottling processes.
  • Low Maintenance: With proper maintenance, mill chains can have a long service life and minimal downtime, supporting continuous production.
  • Corrosion Resistance: For applications where exposure to moisture or chemicals is a concern, corrosion-resistant mill chains can be used to ensure reliable performance.

In the packaging and bottling industry, mill chains are commonly used in conveyor systems, transfer lines, and material handling equipment. They are essential for maintaining the efficient flow of products from one stage of the packaging process to another. Additionally, the precision and reliability of mill chains contribute to consistent product quality and production output.

Overall, mill chains play a crucial role in optimizing the packaging and bottling processes, ensuring that products are handled efficiently and packaged accurately for distribution and consumption.

mill chain

What are the maintenance requirements for mill chains to ensure optimal performance?

Proper maintenance is essential to ensure the optimal performance and longevity of mill chains. Regular inspections and care help identify and address potential issues early, preventing costly downtime and equipment failures. Here are the key maintenance requirements for mill chains:

1. Regular Inspections:

Perform routine visual inspections of the mill chains to check for signs of wear, damage, or misalignment. Look for elongation, excessive wear on pins and bushings, and any loose or broken components.

2. Lubrication:

Ensure proper lubrication of the mill chains. Lubrication reduces friction and wear, dissipates heat, and prevents corrosion. Follow the manufacturer’s recommendations for lubrication intervals and use the appropriate lubricant for the specific operating conditions.

3. Cleaning:

Regularly clean the mill chains to remove dirt, debris, and accumulated particles. Clean chains function better and reduce the risk of abrasive wear.

4. Tension Adjustment:

Maintain the correct tension in the mill chains. Improper tension can lead to premature wear, elongation, and failure. Refer to the equipment’s manual or consult with the manufacturer for the appropriate tensioning procedure.

5. Replacement of Worn Components:

Replace any worn, damaged, or broken components promptly. This includes pins, bushings, rollers, and any other parts that show signs of wear. Using worn-out components can lead to chain failure and damage to other parts of the machinery.

6. Environmental Considerations:

Take into account the operating environment and make any necessary adjustments to maintenance procedures. In harsh or corrosive environments, additional protective measures, such as coatings or seals, may be necessary.

7. Regular Training:

Ensure that maintenance personnel are well-trained in handling mill chains. Proper handling and installation can significantly impact the chain’s performance and lifespan.

8. Record-Keeping:

Maintain detailed records of maintenance activities, including inspections, lubrication schedules, and component replacements. These records can help identify patterns, track chain performance, and plan future maintenance tasks.

By adhering to these maintenance requirements, operators can optimize the performance and service life of mill chains, reducing downtime and improving overall efficiency in material handling and industrial applications.

China supplier Chain Conveyor 64b-2 B Series Short Pitch Precision Duplex Roller Chains and Bush Chains for Steel Mill and Coal Machine   mill chainChina supplier Chain Conveyor 64b-2 B Series Short Pitch Precision Duplex Roller Chains and Bush Chains for Steel Mill and Coal Machine   mill chain
editor by CX 2023-08-30

Tags: bush bush | bush chain | bush chains | bush roller chain | bush roller chains | chain | chain and conveyor | chain bush | chain conveyor | chain conveyor chain | chain conveyor conveyor | chain conveyor for coal | Chain Conveyor Roller | chain conveyor supplier | chain for conveyor | chain machine | chain roller | chain roller chain | Chain Roller Conveyor | chains | chains and conveyor | chains bush | chains conveyor | chains conveyor chains | chains conveyor conveyor | chains conveyor for coal | chains conveyor roller | chains conveyor supplier | chains for conveyor | chains machine | chains roller | chains roller chains | chains roller conveyor | china bush roller chain | china bush roller chains | china chain | china chain conveyor | china chain conveyor supplier | china chain roller conveyor | china chains | china chains conveyor | china chains conveyor supplier | china chains roller conveyor | china conveyor chain | china conveyor chains | china conveyor roller chain | china conveyor roller chain supplier | china conveyor roller chains | china conveyor roller chains supplier | china duplex roller chain | china duplex roller chains | china machine | china precision roller chain | china precision roller chains | China Roller Chain | china roller chain conveyor | china roller chains | china roller chains conveyor | china roller conveyor chain | china roller conveyor chains | china steel conveyor chain | china steel conveyor chains | coal machine | conveyor chain | conveyor chain roller | conveyor chain supplier | conveyor chains | conveyor chains roller | conveyor chains supplier | Conveyor Roller Chain | conveyor roller chain pitch | conveyor roller chain supplier | conveyor roller chains | conveyor roller chains pitch | conveyor roller chains supplier | duplex chain | duplex chains | Duplex Roller Chain | duplex roller chains | machine | mill chain | mill chains | pitch roller chain | pitch roller chains | Precision Roller Chain | precision roller chains | roller chain | roller chain chain | roller chain conveyor | roller chain conveyor chain | roller chain for conveyor | roller chain machine | roller chain pitch | roller chain supplier | Roller Chains | roller chains chains | roller chains conveyor | roller chains conveyor chains | roller chains for conveyor | roller chains machine | roller chains pitch | roller chains supplier | Roller Conveyor Chain | roller conveyor chain supplier | roller conveyor chains | roller conveyor chains supplier | roller machine | roller steel chain | roller steel chains | short pitch conveyor roller chain | short pitch conveyor roller chains | short pitch precision roller chains | short pitch roller chain | short pitch roller chains | steel chain | Steel Chain Conveyor | steel chains | steel chains conveyor | Steel Conveyor Chain | steel conveyor chain roller | steel conveyor chains | steel conveyor chains roller | steel machine | Steel Roller Chain | steel roller chains | steel roller conveyor chain | steel roller conveyor chains

Recent Posts

sugar mill chain

As one of leading sugar mill chain manufacturers, suppliers and exporters of mechanical products, We offer sugar mill chain and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of bush chains

We specializing in the production of Agricultural Gearbox, PTO Shafts, Sprockets, Fluid Coupling, Worm Gear Reducers, Gears and racks, Roller Chains, Sheave and Pulleys, Planetary Gearboxes, Timing Pulleys, Shaft Collars and more.

We have exported our products to clients around the world and earned a good reputation because of our superior product quality and after-sales service.

We warmly welcome customers both at home and abroad to contact us to negotiate business, exchange information and cooperate with us.